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On" Best" Interpolation*

CARL DE BOOR

Mathematics Research Center, University 01 Wisconsin, Madison, Wisconsin 53706

Recent interest in the problem of minimizing II jlkl II"" under the constraint that
I(ti) = lo(t,), i = 1,... , n + k, for some givenj~ and given (ti)~+k seems to make
it worthwhile to explain how Favard solved this problem in the thirties, particul­
arly since Favard's paper on the subject is rather sketchy in places.

The explanation is given in terms of a dual problem, using a technique initiated
by M. Krein. In addition, the analogous problem of minimizing Iljlklllp for
1 <: p < 00 under similar constraints is discussed.

1. INTRODUCTION

In [2], Favard considers the problem of minimizing j(k) over

F:= {IE IL~) I j(t;) =!o(t;), i = 1,... ,11 + k}

for given fo and given O,-s.:; t1 < t2 < ... < tn+k ,-s.:; 1. Favard solves this
problem in the following sense. He constructs a function! E F at which
inffEF II j(k) II"" is taken on and which, in addition, has the property that

!EF and Ij(k)(t)1 ,-s.:; 1!(kl(t)1 for all t E [0,1] implies! = j, (1)

i.e.,! is, in this sense, an element of F with absolutely smallest kth derivative.
Favard also states that! is unique, but it is not clear exactly in what sense!
is supposed to be unique. Certainly, (1) can hold for many different elements
! of F, all of which also minimize II j<k) II"" . But it is true that Favard's! is
the unique solution of a certain intrinsic sequence of minimization problems,
as a consequence of which! also satisfies (1).

It is the purpose of this paper to give a simple account of Favard's argu­
ments using duality, and to discuss the analogous problem in 1L~1 for
1 ,-s.:;p < 00 as well.
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ON "BEST" INTERPOLATION

2. DESCRIPTION AND REDUCTION OF THE PROBLEM

Let t := (t,) be nondecreasing. For a sufficiently smoothf, denote by

fit := (f,)

the corresponding sequence given by the rule

29

with j := J(i) := max{m I ti - In = ti }.

Assuming that ran t C [a, b] and that t, < t'+k' all i, fit is defined for
every f in the Sobolev space

lL~k)[a, b] := {fE C(/H)[a, b]! ilk-I) abs. cont.; ilk) E lLp[a, b]},

with 1 ~P ~ 00.

Consider the problem of minimizing Ili<k) lip over

F:= F(t, a, k,p, [a, bJ):= {fElL~)[a, b] I fit = a}

for some given a, some bounded [a, b], and some finite t. Then F is certainly
not empty; it is, e.g., known that F contains exactly one polynomial of
degree <n + k. Hence,

F = {fE lL~)[a, b] I fit = fo It}

for some fixed function.fo E F. Further,

[ti ,... , ti+k]f = [t; ,.. " ti+k].fo ,

where

for all fEF,

[t, "00' ti+klf

denotes the kth divided difference of f at the points t; ,..., ti+k' Favard
already observes (without using the term "spline," of course) that, for
fE lL~k)[a, b],

[t; '00" ti+df = rMi,k(t)f(k)(t) dtjk!
a

with

M;.it)/k! := [t, '00" ti+k] (. - t)~-I/(k - l)!

a (polynomial) B-spline of order k having the knots t, '00" t;+k' Hence, F is
contained in
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On the other hand, for every fin the set (2), there exists a (unique) polynomial
PI of degree <k so that f - PI E F, viz the unique polynomial PI of degree
<k for which

Consequently, with

g '_j(k)
0'- 0 ,

G := G(t, a, k, P, [a, b))

:= 19 E ILp[a, b] IJMi.kg = JMi.kgO ' i = 1,... , nl'
it follows that

inf Ilf(k) lip = inf II g lip
reF geG

(3)

and that k-fold differentiation maps the solution set of the left-hand minimi­
zation problem one-one and onto the set of solutions of the right-hand mini­
mization problem. For this reason, Favard considers in detail minimization
of II g 1100 over

19 E 1L00[a, b] IJcp,g = JCPigO, i = 1,... , nl

with CPl ,... , CPn some integrable functions, as described in the next section.

3. AN INTERPRETATION OF FAVARD'S ARGUMENTS

Let I < P ~ 00, lip + llq = 1. With CPl ,... , CPn E ILq[a, b], and go E ILp[a, b]
given, let

Further, let ,\ be the linear functional defined on

by the rule

,\cP : = rcp(t) go(t) dt,
a

for all cP E S.

Then dim S ~ n. If, in fact, dim S = 0, the extremum problem has the
unique solution g = 0. Otherwise, identifying 1L,,[a, b] in the usual way
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with the dual of ILq[a, b), G is seen to coincide with the collection of all
extensions of A to a continuous linear functional on ILq • Hence,

infll g lip = inf{11 fL III fL E (lLq[a, h])*, fL Is = A1 = I! A1,
gEG

by the Hahn-Banach theorem, settling existence of a solution as well.
As to uniqueness and characterization of a minimum g, let if-; be an (IL,,-)

extremal for '\, i.e.,

Then, for every minimum g,

Aif-; = sup A<p/1i <p Ilq .
rrES

(4)

Hence,

(5)

For p < 00 (p = I having been excluded at the outset), this implies that

g(t) = Ii AII I if-;(t)I H signum if-;(t), (6)

which characterizes the minimum g completely since Ii . li q is strictly convex,
hence if-; is uniquely determined by (4). In particular, g = II ,\ II if-; for p = 2.

For p = 00, and this is the case actually considered by Favard, (5) only
implies that

g(t) = P II signum if-;(t) for t rt N", := {t I if-;(t) = OJ.

Actually, the slightly stronger statement holds that

hE G and I h I 0::;: Ig I off N", implies h = g (= II ,\ II sign if-;) off N",. (7)

In particular, the minimum g is unique in case I Nw I = O.
If N", has positive measure, then II . I:", may have more than one minimum

in G, any two differing only on Nw• In this case, Favard apparently attempts
to single out a particular minimum gl by the requirement that gl IN", also
be a minimum for II' in
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with go now chosen in particular to be a minimum for II . 1100 in G. This choice
for go guarantees that the minimal value of II . 1100 on G,p is no bigger than II ,\ II,
since it equals II '\211, with '\2 the linear functional given on

by the rule

and so

Further, any minimum g2 of II . Iloc in G,p gives rise to a minimum gl in G by
the construction

for t E N,p,
for t rt N,p ,

since evidently then II gl II", = II go 1100 , and, for all rp E S,

as g2 E G,p . Finally,

dimS,p < dimS

since the linear map rp f--* rplN,p takes the nonzero element if; of S to O. This
implies that, while II . 1100 may again not have a unique minimum in G,p , the
resulting introduction of further additional minimization problems in the
manner described will terminate after ~n steps in a problem on some N for
which dim{rplN I rp E S} = O.

The entire procedure is described more formally as follows.

Favard's Procedure

Let a bounded measurable set N1 ~~, rpl , ... , rpn E 1L1(N1), go E 1L00(N1)

be given. Set S := span(rpl , ... , rpn) ~ 1L1(N1).

Step 1. Set i : = I, g := go .

Step 2. Set mi := inf{11 g 1100 I g E Gi } with

Gi : = I/ g E lL oo(Ni ) I I grp = I grp, all rp E S/
Nt N z )

and pick a point g, in G, at which the infimum is attained.
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Step 3. If Si := {<pIN I <p E S} has dimension 0, set NHI := 0. Otherwise,
pick fi E S so that filN 'is an ILl-extremal for Ai: Si~ lR: <p f->- IN g<p, i.e.,, ,

f, E S, II fi II1,N, = 1, J gf, = II A, II = sup J g<p/11 <p lil,N,
Nt qJES N 1

and set N i+l := {tEN, I f,(t) = 0].

Step 4. Redefine g to equal g, on N i .

Step 5. If I Ni+l I > 0, increase i by 1 and go to Step 2. Otherwise, stop.
In the terms and notation already introduced, the earlier discussion implies

the following

LEMMA 1. Favard's procedure produces a function g E G1 with ii g 110: =
inf{11 g !Io: Ig E GI }, and decreasing sequences NI J ... J N", and ml :;:: ... :;::
m rn ;;;0 °for some m ~ n so that,for i = 1, ... , m, I g I = m, on N,\N;+l'

g E GI and I g I < I g I on NI\N'+l implies that g = g on N1\N;'d' (8)

(with N"'+l some set of measure zero).

Favard's procedure involves a certain number of choices, each of which
could, offhand, affect the final output. The following, independent charac­
terization of g is therefore of interest.

LEMMA 2. For given go E lLo;[a, b], gil-en finite-dimensional subspace
S h: 1L1[a, b], and given (measurable) N1 h: [a, b], let

consist of exactly those g E G := {g E 1L1(N1) I I <pg = I <pgo, all <p ES} which
satisfy the following.

(i) I g I has finite (essential) range, {m1 , ... , m r } say, with m1 > ... > m r •

(ii) With N; := {t E N1 II g(t)1 ~ m,}, i = 1,... , r, N m := 0, and, for
i = 1,..., r, g uniquely minimizes Ig I on N1\N'+l' i.e., g E G and Ig ! ~ Ig I
on NI\Ni+1 implies that g = g on N 1\N'+1 .

Then E(go ,S, N1) has exactly one element, viz. the function produced from
go, S, and N1 by Favard's procedure.

Proof Lemma 1 already establishes that gE E(go ' S, N1) for any g
produced from given go, S, and N1 by Favard's procedure. It therefore
suffices to show that E(go , S, N1) cannot have more than one element. This
we prove by induction on dim Sl with Sl := {<p IN I <p E S}, it being trivially

1
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true when dim Sl = O. Hence assume that dim Sl > 0, and that, in addition
to some g satisfying (i) and (ii) above, E(go , S, N I ) also contains a certain g',
with ess.ranl g' I = {mt', ... , m;,}, ml ' > ... :> m;" and let N,': ~=

{t E NI II f(t)\ ~ m:}, i = I, ... , r'; N,'+l:= 0. Assume without loss of
generality that ml' ~ nil' Then Ig' I ~ Ig I on N I \N2 , hence g' = g on
NI \N2 , therefore ml' = m l and N2' C N2 ; but then Ig I ~ Ig' I on NI\N2'

and so g' = g on N I \N2' showing that N 2 = N 2'. It follows that f,"2 gtp =

IN f tp, all tp E S, hence both g IN and g' IN are in E(g, S, N 2) and, as
2 2 2

dim{tp IN
2

I tp E S} < dim Sl' induction hypothesis therefore gives g = g'
also on N 2 • I

It follows in particular that

g E GI and I g I <; I g I implies g = g. (9)

Hence, g is smallest in absolute value among the elements of G. But, contrary
to what the italicized statement of [2, p. 289] might indicate, g need not be
the only element of GI satisfying (9). Take, e.g.,

Then, for every s E [0, 1), the function get) := (t - s)~/(1 - s) is in GI and
satisfies (9). To enlarge upon the example somewhat: For each s E [0, H

A • \ 0,
get) .= /1/0 - s),

2,

is a minimum for II ·llf. in

o < t < s,
s < t < 1,
1< t < 2,

GI := )g E IL",[O, 2] Irg(t)dt = I, f g(t)dt = 2!
II 1

and satisfies (9).
It should be noted that the idea of looking at constrained minimization

dually, as a problem of finding norm-preserving extensions for a given linear
functional, and then using representation theorems for such functionals is
far from new. The earliest and basic reference is apparently Krein who in [9],
a publication predating Favard's paper, analyzed in this fashion what he
calls the L-moment problem: To determine, for given CPI , .•• , CPn E ILI(N) and
(c.)~ E IRn, the numbers L so that there exist g E IL",(N) with

and f tp,g = c, ,
N

i = I, ... , n.



ON "BEST" INTERPOLATION 35

But, in contrast to Favard, Krein is content to consider only the case where
S = span(!Pi)~ has the happy property that all of its nonzero elements vanish
only on a set of measure zero.

4. DISCUSSION OF CASE P = I

The case p = I demands special discussion since IL p fails to be the dual
of ILq in this case. This is reflected in the fact that II . 111 may not have a
minimum in

G= !gEIL1[a,bJIJ !p,g= J!p,go, i= I, ... ,n(.

Of course, with

S = span(!P1 ,... , <Pn) C lL"ja, b]

and

as before, it continues to be true (as was observed and utilized in a much
more general setting by Holmes [6]) that

inf{;l gill Ig E G} = inf{111k II Ilk E (lLl[a, b])*, Ik Is = A} = II A Ii,

by the Hahn-Banach theorem, which also gives the existence of solutions
for the second problem. But, unfortunately, none of these solutions may be
representable as integration against an ILl-function. In this situation, Fisher
and Jerome [5] recently proposed to restrict attention to the case S C C[a, b],
and. correspondingly, to look for those solutions of

inf{l! Ik II Ilk E C*[a, b], Ik Is = A]

which are extreme points of the convex set of all solutions. They show that
all such extreme points must be of the form

with Dt denoting point evaluation at t. This is not too surprising in view of
the fact that {±D t I t E [a, b]} comprises the extreme points of the unit ball
of C*[a, b], while by a lemma by Singer [10; Chap. 2, Lemma 1.3] every
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linear functional A on an n-dimensional subspace of a normed linear space X
has a norm-preserving extension to all of X of the form

n

L (3,e"
,=1

with (3, ); 0 and ei an extreme point of the unit ball of X*, i = 1, ... , n, and,
of course, L; (3, = II A II·

lt turns out that S is often merely in the space

of piecewise continuous functions on [a, b] with breakpoints at Tl "." Tm-l ,

for some T = (T;):;' with a = TO < 00. < Tm = b. The only additional point
to be made then is that, strictly speaking, each f E C, is defined on

[a, b],:= h+, T1-] U ... U [T~-l' T m-],

i.e., f has the two values 1(T,-) and 1(T;+) "at T;." This implies that the
extreme points of the unit ball of C,* are all of the form ±Ol for some
t E [a, b], . Hence, Singer's lemma implies the

LEMMA. Although, with go E 1L1[a, b], and f{Jl ,... , f{Jn E lL oo [a, b], II . III may
fail to have a minimum in

\ J . . IG := Ig E 1L1 [a, b] I f{J,g = j f{J,go, 1= 1'00" nj

even if S := span(f{Jl ,... , f{Jn) C C[a, b], if sec, for some T = (T;):;' with
a = TO < 00. < T m= b, then there exists 13 E IRn and g1 , ... , gn E [a, b], so
that

inf{11 g III Ig E G) = L I (3i I = II A II

with

while

Finally, note that the extremals for A help once again to characterize at
least partially the norm-preserving extensions of A. Specifically, if
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is some norm-preserving extension of .\ to all of C, (with r an arbitrary
integer), and l/J is any IL",-extremal for .\, i.e.,

Ill/J 1100 = 1,

then
r r

I!.\ II = .\l/J = L f3.l/J(~,) ~ L I f3, I i: l/J Pro = P II,
i~l ,~l

hence, for all i,

But this implies that every "active" ~i' i.e., every ~, with f3, 7'= 0, must be
an extreme point for every 1L00-extremal of .\. At times, this implies that
r ~ n.

It should be noted that each such linear functional :L f3,o, ' and in fact
every continuous linear functional fJ- on C, , has a unique rep~esentation as
a function hE NBV[a, b), in the sense that

fJ-g = r gdh,
rt

for all g E C, .

Here, NBV[a, b), is the Banach space of all functions h of bounded variation
on [a, b) with norm II dh II = Var(h), with each h normalized to be continuous
from the right at every point except TO , ••• , Tm-l' and to satisfy h(a) = O.
The function h corresponding to L. f3.o, is piecewise constant with jumps
only at the points ~l ~ ... ~ ~r, the judJp at ~i having (signed) height f3, '
unless ~, = T J - and ~'+l = T)+, in which case h has a double jump at T) •

5. EXISTENCE AND (PARTIAL) CHARACTERIZATION OF "BEST" INTERPOLANTS

We return to the original problem of minimizing II flk) lip over all f in

for some given t = (t,)~H with t, < t,H' and ti E [a, b], all i, and some
given.fo. We infer from Sections 2 and 3 that, for 1 <p < 00, IIj<k) lip has
a unique minimum and that this minimum satisfies

for some !J; E Sk.t := span(Ml,k ,... , Mn,k) =: the linear space of polynomial
splines of order k with knot sequence t. Such matters as differentiability at
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the t;'s or at other points, or the number of possible zeros, or the fact that
jlk) = 0 off (t1 , tn+k)' etc., can therefore all be read off from known facts
about polynomial splines. In the special case p = 2, one obtains, of course,
jik) = f, hence f is a so-called natural spline of order 2k (at least in case
a < t1 and tn+k < b).

Things become a bit more interesting and actually new in the case of
p = 00.

LEMMA. With N 1 = [a, b]. rp, = M"k' i = I, ... , n, Favard's procedure
produces a step function !lk) = g with the following properties.

(i) I'k) vanishes off (t1 , t n+k);

(ii) I !Uel I has all its jumps at points oft;

(iii) !lk) has less than n jumps in (t1 , tn+k)'

Proof Let g be the step function produced by Favard's procedure
together with the sequences N1 J N 2 J .. , , and f1' f2 , ... , all in Sl = §k,t.

I g I has jumps only at the essential boundary points of N i for i = 2, 3, ....
On the other hand,

N,. = n{t E N1 I fi(t) = Of·
v:,

Since the f,'s are piecewise polynomial with breakpoints only at the t/s,
each set {t E N 1 I flt) = O} consists, aside from <n isolated points and the
set [a, b]\[t1 ' tn+k]' of a finite union of one or more disjoint intervals of the
form [tL , tR ]. This proves (i) and (ii).

As to (iii), we prove the slightly stronger statement,

With N 1 some interval of the form [tL , tR ] and Sl = span{MJ,k IjEl}
for some subset 1 of {I, ... , n} such that

U supp M J .!. J N1 '

JEJ

Favard's procedure produces a step function g having < dim Sljumps,

by induction on dim Sl, it being trivially true for dim SI ~ 1. The well­
known variation-diminishing property of splines discovered by Schoenberg
(see, e.g., [7] for a proof) implies that f1 has less than dim Sl strong
sign changes on N1 ; hence there is nothing more to prove unless
N2 = {t E N1 I flU) = O} has positive measure. In that case, as already
remarked upon above. N 2 is the union of one or more, say of r, mutually
disjoint intervals

i = I .... , r.
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Correspondingly, N 1\N2 is the union of one or more, say of s, intervals J, ,
i = I, ... , S (mutually disjoint), with I r - S i ~ I. Together, II,"" I r ,

J1 , ... , 1., give a partition of N1 • We claim that this partition induces a
partition II ,..., I r , J1 , ... , J, , f.: of J by

I, := {j E J i I supp M),k n I, I > 0],

J, := {j E J I supp M),k C J,},

f.::= {jEJ II supp M),k n NIl = OJ.

This is obviously a partition for J except perhaps for the fact that IIJ. n Iv = 0

for all !-L < v. But, since all B-splines which do not vanish identically on a
given interval are linearly independent there, it follows with !f;1 = L}EJ (3jM},k

that
(3) = 0 for all i E J for which M),k iN> oF O.

If now.i E I u n J" , then every M',k not identically zero on

would be not identically zero on either IIJ. or else on Iv ; hence (35 = 0 for
each such s, which implies that !f;1 vanishes identically between IIJ. and I,. ,
a contradiction.

It follows that

dim SI = L I I, I + L i J, I

and that S2 = {cp IN I cp E SI} breaks up into r mutually orthogonal subspaces
>

hence gcan be thought of as having been obtained on N 2 by applying Favard's
procedure separately to each of these r component problems. Further,
U JEl , supp M},k J I, ; hence dim S2" > 0 and, by induction hypothesis,

jump(I,) ~ dim S2., - 1 = I 1, I - I

with jump(I) := number of jumps of g on I. Also, on J, , !f; is in the span of
{MJ • k l.i E J;}. Hence, by the variation-diminishing property of splines,

jump(J,) ~ I J, I - I.

Hence, counting the r + S - 1 possible jumps in g between I,'s and J,'s,

jump(N1) ~ I (I I, ! - I) + I (I J, I - I) + r + S - 1 = dim SI - I. I
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We will call the unique j in

F oo = {IE 1L::)[a, b] lilt = a},

for which /tk' is the function produced by Favard's procedure (with
N 1 = [a, b], gJi = M i .k , i = 1,... , n) FaL'ard's solution to the problem of
minimizing Ilf lk) I!", over F oo • We infer from the preceding lemma that
Favard's solution is a polynomial spline of order k + 1 with kth derivative
zero outside [t1 , tn+k], and less than n knots, all simple, inside (t1 , tn+ k ).

Spline solutions which, in general, are different from Favard's solution
have been identified by various authors. In his thesis [11], Smith showed
the existence of a solution I with pk} a step function having fewer than k
jumps in each interval [t, , t'+1]' with I f<k) I having jumps only at the points
of t. Smith constructed such a solution as a limit point of the net (fp)P<>J of
unique minimum points in F" for Ilf(k) II", as p -+ 00. It now seems likely
that Favard's solution is such a limit point if not usually the limit of (Ip)"
as p -+ 00.*

Karlin [8] was the first to see that at least one solution exists in the form
of a perfect spline of order k + I, i.e., a spline I of order k + 1 with Iflk' I
constant, and, more significantly, that a perfect spline solution could be
found having <n knots (all simple). A simple proof can be found in [1].

Fisher and Jerome [3] showed the existence of an interval [tr' tr+k] on
which all solutions have the same kth derivative. This is not too surprising
in view of the facts that all solutions must agree with Favard's solution on
the set on which Favard's solution takes on its extreme values, and that this
set contains the support of some nonzero element of §k.t , hence the support
of at least one B-spline M r •k . 11 might be guessed from [3, Section 1] that
there is a unique solution/EF", (on [t1 , tn +k ]) with the further property that,
on each subinterval [t, , ti+1], Ilpk) 11ro is minimal. While it is true that there
could be only one such solution, it is not true that such a solution always
exists. If, e.g., k = 2, ti = i, i = Loo., 5 = n + k, and the conditions in
terms ofP2) are

I M f(2) = 2
1.2 ' r M f(2) = 3

2.2 ' I M f(2) = 43,2 ,

then Favard's solution turns out to satisfy

j(2)(t) = p,
/4,

1 < t < 3,
3 < t < 5.

* Added in proof This suggestion has been taken up by C. K. Chui, P. W. Smith, and
J. D. Ward who proyed in "Fayard's solution is the limit of Wk'"-splines," to appear in
Trans. Amer. Math. Soc., that (/p)J'<ro conyerges lL;kl to Fayard's solution as p ~ 00.
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On the other hand, the function j with

41

\

1,
j<2l(t) = I + 3(3 - t),

4,

I < t < 2,
2 < t < 3,
3 < ( < 5,

is also a minimum. If now I were a minimum of the kind described above,
then it would follow that

But then

Ij(2) I ~ I on (I, 2), Ip2l I ~ 2 on (2, 3).

i.e., such I could not be in Fro .
Finally, we consider the case p = 1, based on the discussion in Section 4.

The elements of S = §k,t are all in C, , with 't" consisting of a and b together
with all points of t of multiplicity k.

Consider first the case that no point of t has multiplicity k. Then
§k,t C C[a, b], and every if; E §k,t vanishes outside of «(1' tn+k). Hence, with
hE NBV[a, b], such that dh = L:~ f3iD<, while

all S E §k,t,

all S E §k,t .

n

II dh II = L I f3i I = inf{l! dpk-1l II (= II jlk) 111) 1IE E1}

(the existence of which is assured by the discussion in Section 4), the function

fi,(t) := r (t - U)~-l (dh)(u)j(k - 1)!
a

is a polynomial spline of order k with (interior) knots gl ,... , gn , all simple
and in (t1 , tn+k ) and so that

I S df~k-1) = I S df~k-1),

But then, with Ph the unique polynomial of order k which agrees withl" - fo
on (ti)i , the function

is a spline of order k with ~n knots in (a, b), all simple and all in (t1 , tn+k)'
which agrees withlo on t and for which II dj<k-1) II is minimal. The existence
of such a spline (except for the fact that all the t;'s are in (t1' tn+k)) could
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have been deduced directly from Fisher and Jerome's work [5J, which
considers this problem in greater generality both regarding the interpolation
conditions and the seminorm minimized.

Next, consider the case in which t has points of multiplicity k. Proceeding
as above to construct f = Ph +1", we find it still true that f is a spline
function of order k with n knots gl ,..., gn , all simple, inside (a, b), while f
agrees with fo on t and II djlk-ll II is minimal, provided none of the ~, coincide
with a point t of multiplicity k. The contrary case cannot always be avoided
as the following example shows. If k = 2, a = - L tl = t2 = 0, 13 = I,
b = 2, and fo(t) = I + t - t 2, then ~I = 0 for all minimizing h = fJI0,

1

(note that n = 1) since 0 is the only point at which a nonzero if; E Sk.l can
take on its extreme value in this case.

In view of the generality maintained in Sections 3 and 4, the preceding
discussion is open to much generalization. It is possible in this fashion to
analyze minimization of II Mfllp over F = {IE 1L~~)[a, bJ IAJ = el, , i = 1,... ,
n + k} with M an ordinary linear differential operator of order k in normal
form with continuous coefficients on [a, bJ and AI,"" AnH linear functionals
which are linearly independent and continuous over C(k-li [a, bJ, and total
over ker M. Statements involving numbers of zeros, etc., would, of course,
require additional hypotheses. But. this paper is already long enough.
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